esnpy package¶
- class esnpy.DeepESN(reservoirs: list[esnpy.reservoir.ReservoirBuilder], trainer: Trainer, mask: list[bool] | None = None)[source]¶
Bases:
BaseESN
DeepESN implementation.
- class esnpy.ESN(reservoir: Reservoir, trainer: Trainer)[source]¶
Bases:
BaseESN
Echo State Network implementation.
- class esnpy.ReservoirBuilder(size: int, leaky: float, input_size: int, input_init: ~esnpy.init.Initializer, intern_init: ~esnpy.init.Initializer, input_bias: bool = True, input_tuners: list[esnpy.tune.Tuner] = <factory>, intern_tuners: list[esnpy.tune.Tuner] = <factory>, fn: ~typing.Callable = <ufunc 'tanh'>)[source]¶
Bases:
object
Dataclass helper to configure and build a reservoir.
- fn: Callable = <ufunc 'tanh'>¶
- input_bias: bool = True¶
- input_init: Initializer¶
- input_size: int¶
- input_tuners: list[esnpy.tune.Tuner]¶
- intern_init: Initializer¶
- intern_tuners: list[esnpy.tune.Tuner]¶
- leaky: float¶
- size: int¶
esnpy.init module¶
- class esnpy.init.NormalDenseInit(mean: float, std: float)[source]¶
Bases:
Initializer
- class esnpy.init.NormalSparseInit(mean, std, density)[source]¶
Bases:
SparseInitializer
- class esnpy.init.SparseInitializer(density: float)[source]¶
Bases:
Initializer
- class esnpy.init.UniformDenseInit(min_value: float, max_value: float)[source]¶
Bases:
Initializer
- class esnpy.init.UniformSparseInit(min_value, max_value, density)[source]¶
Bases:
SparseInitializer
esnpy.tune module¶
esnpy.train module¶
- class esnpy.train.RidgeTrainer(alpha: float, use_bias: bool = True, use_input=True)[source]¶
Bases:
Trainer
- compute_readout(data: ndarray[tuple[Any, Any], dtype], target: ndarray[tuple[Any, Any], dtype]) ndarray[tuple[Any, Any], dtype] [source]¶
- property use_bias¶
- property use_input¶
- class esnpy.train.SklearnTrainer(sklearn_model, use_bias: bool = True, use_input=True)[source]¶
Bases:
Trainer
- compute_readout(data: ndarray[tuple[Any, Any], dtype], target: ndarray[tuple[Any, Any], dtype]) ndarray[tuple[Any, Any], dtype] [source]¶
- property use_bias¶
- property use_input¶
- class esnpy.train.Trainer[source]¶
Bases:
ABC
- abstract compute_readout(data: ndarray[tuple[Any, Any], dtype], target: ndarray[tuple[Any, Any], dtype]) ndarray[tuple[Any, Any], dtype] [source]¶
- train(inputs: ndarray[tuple[Any, Any], dtype], states: ndarray[tuple[Any, Any], dtype], target: ndarray[tuple[Any, Any], dtype]) ndarray[tuple[Any, Any], dtype] [source]¶
- abstract property use_bias¶
- abstract property use_input¶